Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A

نویسندگان

  • Milos M. Petrovic
  • Karel Vales
  • Biljana Putnikovic
  • Vuk Djulejic
  • Dusan M. Mitrovic
چکیده

Short title: Ryanodine receptors, voltage-gated calcium channels and PKA Abstract We present the review of the data from the literature about relationship between ryanodine receptors and voltage-gated calcium channels in myocardium, and also how both of them are related to protein kinase A. Ryanodine receptors, which have three subtypes (RyR1-3), are located on the membrane of sarcoplasmic reticulum. Different subtypes of voltage gated calcium channels interact with ryanodine receptors in skeletal and cardiac muscle tissue. The mechanism of excitation-contraction coupling is therefore different in skeletal and cardiac muscle. However, in both tissues ryanodine receptors and voltage-gated calcium channels seem to be physically connected. FK-506 binding proteins (FKBPs) are bound to ryanodine receptors, thus allowing for their concerted activity, called coupled gating. Activity of both ryanodine receptors and voltage gated calcium channels is positively regulated by protein kinase A. These effects are, therefore, components of the mechanism of sympathetic stimulation of myocytes. The specificity of this enzyme's targeting is achieved by using different A kinase adapting proteins. Different diseases are related to inborn or acquired changes in ryanodine receptor activity in cardiac myocytes. Mutations in cardiac ryanodine receptor gene can cause catecholamine provoked ventricular tachycardia. Changes in phosphorylation state of ryanodine receptors can provide a credible explanation for development of heart failure. The restoration of their normal level of phosphorylation could explain the positive effect of beta-blockers in treatment of this disease. In conclusion, molecular interactions of ryanodine receptors and voltage-gated calcium channels with PKA have significant physiological role. However, their defects and alterations can result in serious disturbances.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ryanodine receptors, voltage-gated calcium channels and their relationship with protein kinase A in the myocardium.

We present a review about the relationship between ryanodine receptors and voltage-gated calcium channels in myocardium, and also how both of them are related to protein kinase A. Ryanodine receptors, which have three subtypes (RyR1-3), are located on the membrane of sarcoplasmic reticulum. Different subtypes of voltage-gated calcium channels interact with ryanodine receptors in skeletal and ca...

متن کامل

Ryanodine Receptors Selectively Interact with L Type Calcium Channels in Mouse Taste Cells

INTRODUCTION WE REPORTED THAT RYANODINE RECEPTORS ARE EXPRESSED IN TWO DIFFERENT TYPES OF MAMMALIAN PERIPHERAL TASTE RECEPTOR CELLS: Type II and Type III cells. Type II cells lack voltage-gated calcium channels (VGCCs) and chemical synapses. In these cells, ryanodine receptors contribute to the taste-evoked calcium signals that are initiated by opening inositol trisphosphate receptors located o...

متن کامل

Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK.

Reactive oxygen species (ROS) are required for the induction of long-term potentiation (LTP) and behave as signaling molecules via redox modifications of target proteins. In particular, superoxide is necessary for induction of LTP, and application of superoxide to hippocampal slices is sufficient to induce LTP in area CA1. Although a rise in postsynaptic intracellular calcium is necessary for L...

متن کامل

Synaptic transmission mediated by internal calcium stores in rod photoreceptors.

Retinal rod photoreceptors are depolarized in darkness to approximately -40 mV, a state in which they maintain sustained glutamate release despite low levels of calcium channel activation. Blocking voltage-gated calcium channels or ryanodine receptors (RyRs) at the rod presynaptic terminal suppressed synaptic communication to bipolar cells. Spontaneous synaptic events were also inhibited when e...

متن کامل

Current and Potential Antiarrhythmic Drugs Targeting Voltage-Gated Cardiac Ion Channels

Voltage-gated ion channels play a fundamental role in the generation and propagation of the cardiac action potential by acting synergistically to produce an ionic current across cellular membranes. Abnormalities of heart ion channel activities that lead to loss or gain of function (channelopathies) are often associated with disruption of the coordinated propagation of electrical activity of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007